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ABSTRACT
In this article the periodic signal detection method on the base of Duffing system cha-
otic oscillations analysis is presented. This work is a development of the chaos-based 
signal detection technique. Generally, chaos-based signal detection is the detection of 
chaotic-to-periodic state transition under input periodic component influence. If the in-
put periodic component reaches certain threshold value, the system transforms from 
chaotic state to periodic state. The Duffing-type chaotic systems are often used for such 
a signal detection purpose because of their ability to work in chaotic state for a long time 
and relatively simple realization. The main advantage of chaos-based signal detection 
methods is the utilization of chaotic system sensitivity to weak signals. But such meth-
ods are not used in practice because of the chaotic system state control problems. The 
method presented does not require an exact system state control. The Duffing system 
works continuously in chaotic state and the periodic signal detection process is based 
on the analysis of Duffing system Poincare map fractal structure. This structure does 
not depend on noise, and therefore the minimum input signal-to-noise ratio required for 
periodic signal detection is not limited by chaotic system state control tolerance.

Keywords: periodic signal detection, chaotic system, Duffing oscillator, Poincare 
section, SNR.

INTRODUCTION

Weak periodic signal detection is one of the 
most important problems in many fields of mod-
ern technology. The main of these fields is the di-
agnostics of industrial machinery and equipment, 
biomedicine signal processing, radar information 
detection and communications. The new chaos-
based signal detection method was proposed in 
1992 [1]. This method is based on the Duffing os-
cillator state transition under weak periodic signal 
influence. The modern works related to the above 
focus on the chaos identification algorithms and 
methods [2]. Also there are different modifica-
tions of the Duffing oscillator which have a high-
er sensitivity [3]. These works are based on the 
results of chaotic system modeling and numeri-
cal simulation. But they are not connected closely 
with the general signal processing theory.

It should be noted that such methods are not 
popular in practical applications because of the 
oscillator critical state control errors. So we pro-
pose a new detection method with using Duffing 
oscillator without the state transition. 

CHAOS-BASED SIGNAL DETECTION

The Duffing oscillator model is given by Eq. 
(1):
 3 ( )x kx x x s t+ − + =  , (1)
where: s(t)  – the driving signal,
 x  – the output signal,  
 k  – the damping constant [2, 4, 5]. 

In this work we consider the damping con-
stant value 0.5k = . The driving signal is defined 
by Eq. (2):
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( ) ( ) ( )0 0 0( ) sin sins s ss t A t A t N t= ω + ϕ + ω + ϕ +  (2)

where: A0sin(ω0t) – the exciting signal; 

 Assin(ωst) – the input signal to-be-
         detected; 

 N(t) – the input noise.

Fig. 1. Typical phase trajectories in chaotic state

The potential function [6, 7] of Duffing oscil-
lator is defined by expression:

 4 21( )
2

H x x x= ⋅ −  (4)

The state of Duffing oscillator depends on the 
average potential value. For the Duffing oscillator 
(1,2) the chaotic oscillations are possible in the 
interval:

 0 ( ) 1H x< <  (5)

This is shown in Figure 2.

Fig. 2. Phase trajectories in the chaotic state

Generally, the dynamics of Duffing oscillator 
can be described by the phase trajectories which 
are projected on the Hamiltonian surface [8, 9, 
10]. The Hamiltonian surface H(x, x’) of unforced 
Duffing oscillator is given by expression (3).

 
2 4 21( , ') ( ')

2
H x x x x x= + −  (3)

The projection of Duffing oscillator phase tra-
jectories on its Hamiltonian surface is shown in 
Figure 3.

Fig. 3. Phase trajectories projection on the Hamilto-
nian surface in the case of chaotic state

For periodic signal detection the initial Duff-
ing oscillator state is set to critical chaotic by the 
exciting periodic signal amplitude A0 =  0.8245.

Fig. 4. Phase trajectories near the critical chaotic state

If 0 sω ≈ ω  and the input signal periodic 
component As exceeds its threshold value, the 
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system transforms from chaotic state to periodic 
state [2, 11, 12].

Fig. 5. Phase trajectories in the periodic state

The method described allows to detect weak 
periodic signals under strong background noise 
conditions. The main disadvantages of this meth-
od are related to the critical state control problem. 
In critical state the Duffing oscillator is sensitive 
to non-stationary input signals but in periodic 
state it is not sensitive to weak periodic signals. 
These factors may cause significant errors during 
the periodic signal detection process.

THE FRACTAL-BASED DETECTION 
METHOD 

In this paper we propose the signal detec-
tion method which is based on Duffing oscillator 
Poincare map fractal structure analysis. 

Let us consider the point 0 0( ( , ); '( , ))x kT x kTϕ ϕ  on the phase plane with respect to the Duffing 
oscillator Poincare map structure. This point 
moves along oscillator Poincare map structure 
with time.

If we increase the input signal periodic compo-
nent, the point 0 0( ( , ); '( , ))x kT x kTϕ ϕ  shifts along 
the Poincare map structure, as shown in Figure 6.

The direction of this shift is noise-indepen-
dent. But it varies with respect to the chaotic dy-
namics of the Duffing oscillator.

It is known that the Duffing oscillator Poin-
care map has a complex fractal structure. At any 
time the 0 0( ( , ); '( , ))x kT x kTϕ ϕ  point shift direc-
tion depends on its position in fractal structure of 
Duffing oscillator Poincare map.

The main bifurcation point of Duffing oscil-
lator has coordinates (0; 0). Near this point the 
phase trajectory divergence speed is much higher 
than in other places. When a segment of Poin-
care map structure passes this region, then it is 
stretched as shown in Figure 7.

Fig. 7. The stretching of Poincare map 
fractal structure

If the fractal structure segment passes the 
stretch region, it can be divided into four parts 
with different dynamics. In Figure 7 the parts are 
numbered in accordance with the input periodic 
component amplitude increase direction. Parts 1 
and 2 move from left center to right center. But 
the parts 0 and 3 stay at the orbit of the current 
center. After some time the parts 0, 1, 2, 3 stretch 
as well as the segment {0123}, and the fractal 
structure complexity increases.

Denote the length of the 0 0( ( , ); '( , ))x kT x kTϕ ϕ  
point path along the fractal structure by ( , )t Aλ .
If we consider the signal frequency 0sω = ω , 

0 sA A A= +  is the input periodic component am-
plitude.

Therefore, generally ( , )t Aλ  depends on the 
input periodic component amplitude monotoni-
cally. So the expressions ( )

A const
t

=
λ  and 

0
( )

t t
A

=
λ  

Fig. 6. The effect of periodic component increase
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are monotonic increasing functions, where t0 is 
any time value from the experiment time interval. 
Thus, it is advisable to estimate the path length 

( , )t Aλ  with the tolerance up to one fractal struc-
ture element. Then the path length ( , )t Aλ  can be 
estimated as a normalized number ( , )t AΛ  in the 
quaternary system value:

 
0 1

1 0( , ) 4 4 ... 4 M
M Mt A L L L− −

−Λ = ⋅ + ⋅ + + ⋅    (6)
where: M  – the number of digits, 
 L0, ..., LM – the weights of the correspond-

ing digits. 

The weight value can be taken from the array 
{0, 1, 2, 3}. The fractal structure corresponding to 

( , )t AΛ  is shown in Figure 8.
The fractal structure in Fig.8 shows that in 

the case of input noise absence we can define the 
input periodic signal amplitude A = A0 + As from 
Duffing oscillator output signal with very high 
accuracy. If we know the 0( , )kt AΛ , then we can 
compare this value to 0( , )k st A AΛ + , and deter-
mine the presence or absence of periodic compo-
nent with amplitude As at the input. The detection 
process is the decision between two hypotheses,  
H0, signal absent, and H1, signal present.

For convenience, we consider the discrete 
functions 0 ( )HV k  and 1( )HV k : 

 0 0( ) ( , )H kV k t A= Λ , (7)
 1 0( ) ( , )H k sV k t A A= Λ + . (8)

The fractal-based periodic signal detection 
process was simulated in MATLAB/Simulink en-
vironment under the folowiwng conditions:

0 0.4A V= , 0.005sA V= , 
0 1 / secs radω = ω = .

The noise is white and the signal-to-noise ra-
tio is 3dB in the band 0 0[0.1 ;10 ]ω ω . The graphs 
of the functions 0 ( )HV k  and 1( )HV k are presented 
in Figure 9.

The Figure 9 shows that if the signal 
sin( )s sA t⋅ ω  is present, then V(k) is much greater, 

than if it is absent. The case of input noise pres-
ence is shown in Figure 10.

The results in Figure 10 show that the input 
noise causes the increase of 0 ( )HV k  value, but 

1 0( ) ( )H HV k V k>  as well.
The experiments show that if the input SNR is 

higher than 0dB by power, we can set a constant 
threshold value 0 max 1 min( ; )thr H HV V V∈ . Therefore, 
the detection process is robust and reliable.

Fig. 8. The fractal structure corresponding to path length estimation ( , )t AΛ

Fig. 9. Functions 0 ( )HV k , 1( )HV k  without 
input noise Fig. 10. Functions 

0 ( )HV k , 
1( )HV k  with input noise
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If the input SNR is lower than 0 dB by power, 
then the first digits ,...,M M pL L −  of 0( , )kt AΛ  can 
be greater than the same digits of 0( , )k st A AΛ + . 
So we cannot detect the signal sin( )s sA t⋅ ω  direct-
ly with the constant threshold value. In this case 
we must analyze the next digits 1 1,...,M pL L− −  of 

( , )kt AΛ  without respect to the first ,...,M M pL L − . 
This is the direction of our future work.

CONCLUSION 

The main advantages of the method proposed 
are the following features:
 • the critical state setting and control are not re-

quired;
 • Duffing oscillator works continuously in cha-

otic state and the chaos identification is not 
required;

 • the estimation of input periodic component 
amplitude is robust and reliable;

 • the minimum input SNR required for periodic 
signal detection is not limited by chaotic sys-
tem state control tolerance.

This method is more resistant to non-station-
ary and pulse noise in comparison with the known 
method [2]. The direction of the future work is 
connected with the analysis of Duffing oscillator 
Poincare map fractal structure under SNR less 
than 0 dB.
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